3.1 Derivatives of Polynomials and Exponential Functions

In this section we will learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

Let's start with the constant function $f(x)=C$. Remember that the graph of this function is a horizontal line $y=C$, which has a slope of \boldsymbol{O}. Therefore $f^{\prime}(x)$ must equal 0 . Using the definition this is what it looks like.
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{C-C}{h}=\lim _{h \rightarrow 0} 0=0 \quad$ (The limit of a constant $=$ constant.)

Derivative of a Constant: $\frac{d}{d x} \boldsymbol{C}=\mathbf{0}$

Power functions: Let's analyze the function $\boldsymbol{y}=\boldsymbol{x}$. From the graph of this function, we know that the slope of $y=x$ is equal to 1 . Using the definition of the derivative we can prove this.

If $f(x)=x$, then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$

Derivative of the function $f(x)=x$ or $(y=x): \frac{d}{d x}(x)=1$
Example: Use the definition of the derivative to find $f^{\prime}(x)$ if
a) $f(x)=x^{2}$
b) $f(x)=x^{3}$
a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0} 2 x+h$

$$
f^{\prime}(x)=2 x
$$

b) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h}$

$$
=\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2} \quad \boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{3} \boldsymbol{x}^{\mathbf{2}}
$$

Notice that there is a pattern; as long as $n>0$, and n is an integer, then we get the following:
The Power Rule: If n is a positive integer, then

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Example: Use the power rule to find the derivative of the following fuctions:
a) $f(x)=x^{8}$
$f^{\prime}(x)=8 x^{7}$
b) $y=x^{100} \quad y^{\prime}=100 x^{99}$
c) $f(x)=2 x^{10} \quad f^{\prime}(x)=20 x^{9}$

Notice that the example above only took into account of \boldsymbol{n} being a positive integer, but the power rule actually works for any real number n. Therefore we get the following:

The Power Rule (General Version): If n is a positive integer, then

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Example: Use the Power Rule to find the derivative of the following functions:
a) $f(x)=\frac{1}{x^{3}}$ Rewrite $\frac{1}{x^{3}}$ as x^{-3} where $\mathrm{n}=-3$. Then use the power rule. $\boldsymbol{f}^{\prime}(\boldsymbol{x})=-\mathbf{3} \boldsymbol{x}^{-4}$ or $\boldsymbol{f}^{\prime}(\boldsymbol{x})=-\frac{\mathbf{3}}{x^{4}}$
b) $f(x)=\sqrt{x}$ Rewrite \sqrt{x} as $x^{\frac{1}{2}}$ where $\mathrm{n}=\frac{1}{2} . f^{\prime}(x)=\frac{1}{2} x^{\frac{1}{2}-1}=\frac{1}{2} x^{-\frac{1}{2}} \quad \boldsymbol{f}^{\prime}(\boldsymbol{x})=\frac{1}{2 \sqrt{x}}$

New Derivative from Old:

When new functions are created by simply adding, subtracting or multiplying by a constant to an old function, then their derivatives can be calculated in terms of the derivative of the old functions.

The Constant Multiple Rule: If \boldsymbol{c} is a constant and \boldsymbol{f} is a differentiable function, then:

$$
\frac{d}{d x}[c \cdot f(x)]=c \cdot \frac{d}{d x}[f(x)]
$$

The Sum Rule: If \boldsymbol{f} and \boldsymbol{g} are both differentiable, then:

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

The Difference Rule: If \boldsymbol{f} and \boldsymbol{g} are both differentiable, then:

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

We will complete one of these proofs in class. If you are interested in seeing them all, they are on pages 175-176 in your textbook.

Example: Use the constant multiple rule, the sum rule and the difference rule to find the following derivative: $\quad f(x)=\frac{7}{4} x^{2}-3 x+12$

$$
f^{\prime}(x)=\frac{d}{d x}\left[\frac{7}{4} x^{2}-3 x+12\right]=\frac{d}{d x}\left(\frac{7}{4} x^{2}\right)-\frac{d}{d x}(3 x)+\frac{d}{d x}(12)=\frac{7}{4} \frac{d}{d x}\left(x^{2}\right)-3 \frac{d}{d x}(x)+\frac{d}{d x}(12)
$$

$f^{\prime}(x)=\frac{7}{4} \cdot 2 x-3 \cdot 1+0 \quad f^{\prime}(x)=\frac{7}{2} x-3$

Exponential Functions:

If we let the exponential function be $f(x)=b^{x}$, we can try to compute the derivative by using the definition of a derivative.
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{b^{x+h}-b^{x}}{h}=\lim _{h \rightarrow 0} \frac{b^{x} b^{h}-b^{x}}{h}=\lim _{h \rightarrow 0} \frac{b^{x}\left(b^{h}-1\right)}{h}$ (Notice that bx doesn't depend on h, so we can pull it out in front of the limit.)
$f^{\prime}(x)=b^{x} \lim _{h \rightarrow 0} \frac{b^{h}-1}{h}$ If we let $x=0$, then $b^{x}=1$. We see that the limit is the value of the derivative of f at 0 , in other words,
$\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=f^{\prime}(0)$ therefore, $f^{\prime}(x)=b^{x} \cdot f^{\prime}(0) \quad$ (A more exact derivative rule for exponential functions is given later in this chapter. But this leads us into our next definition.)

Definition of the number \boldsymbol{e}.
e is a number such that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$
Now using $f^{\prime}(x)=b^{x} \cdot f^{\prime}(0)$ and let $b=e$ and $f^{\prime}(0)=1$, then we get the following:
Derivative of the Natural Exponential Function: $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
This shows that the exponential function $f(x)=e^{x}$ has the property that it is its own derivative.
Example: If $f(x)=2 e^{x}$, find $f^{\prime}(x)$ and if $g(x)=e^{2}$, find $g^{\prime}(x)$.
$f^{\prime}(x)=\frac{d}{d x}\left(2 e^{x}\right)$

$$
f^{\prime}(x)=2 \frac{d}{d x}\left(e^{x}\right)
$$

$$
f^{\prime}(x)=2 e^{x}
$$

$$
\begin{aligned}
& g^{\prime}(x)=\frac{d}{d x}\left(e^{2}\right) \\
& g^{\prime}(x)=e^{2} \frac{d}{d x}(1) \\
& g^{\prime}(x)=e^{2} \cdot 0 \\
& g^{\prime}(x)=0
\end{aligned}
$$

